

Modeling and Forecasting

Kerim Aydin

Ecosystem Science Review Juneau, Alaska May 2-6, 2016

"Ecosystem" models by region

	EBS	GOA	AI	ARCTIC
ROMS/NPZ	*	0		?
Enhanced assessment	*	*	*	
Technical interactions	+			
Food web	+	+	+	0
Multispecies statistical	*	?	0	
FEAST-spatial	*			
IBM	0	0		
Size Spectrum	0			
Qualitative network	?	?		

^{*} Annual or biennial part of assessment, requested or required by Council.

⁺ Up-to-date for providing issue-specific advice.

O Under active development.

[?] Proposed.

Bering Sea operational suite Bering Sea Models

CE-SSM

CEATTLE

Ecosim

Size-Spectru

Spatial

Additive Pressures

Multiple Interacting (non-linear) Pressures

Non-linear Species Interactions; Non-linear Cumulative Effects

Estimation of Error/ multiple random iterations

Bering ROMS (Regional Oceanographic model)

- Developed with NSF/NPRB (Bering Project)
- Ongoing IEA partnership (AFSC/PMEL)
- Significant advances in ice modeling, ice plankton
- Products
 - 40-year hindcast (1971-2012)
 - Nowcasts (annual)
 - 9-month forecast (annual)
 - Forecasts to 2100 with IPCC outputs
 - Rapid Climate Assessment

9-month forecast - cold pool

- Included in annual ecosystem chapter (November prediction for following summer)
- Strong traction/interest in fishing community
- Forecast led to increased oceanographic field presence in 2015 (unprecedented warmth forecast)
- Review: not all metrics well-predicted; e.g. SST shows biases.

Climate Enhanced Assessment Models

Pred-prey overlap based on thermal envelopes

Stabeno et al. (2013) A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem. Deep-Sea Res II 65-7014-30.

CEATTLE Recruitment – ROMS forced forecasts

FEAST – 10km² Bering Grid trophic structure and population dynamics

FEAST – Forage Euphausiid Abundance in Space and Time

Forage-fish centered, driven by diet interactions

Summer adult distribution – FEAST vs data

Circles are bottom-trawl data; shading is FEAST modeled distribution

FEAST uses

- Primarily for forage fish/zooplankton interactions with climate
- Not "whole ecosystem" missing benthos (flatfish, crabs)
- Includes fleets, future fleet predictive dynamics
- Predicts conditions for predators
 - Specific management uses: Cod and ATF explicitly; fur seals, birds, Chinook salmon implicitly

Data types and availability

	RAW	Magnitude estimates	Rates	Process	ad hoc
PMEL					
BASIS					
ECOFOCI					
MACE					
RACE					
FOODLAB					
NMML					
OBSERVE					
RS					
CAS					\bigcirc
EXTERNAL					
Oatabase nonpublic	Data publi	(0)	leler develo n nonpublic		odeler develor om public

Food web modeling – Ecopath/Ecosim

- All four regions
- Multiple reviewed uses in ecosystem assessment (2005-present)
- Annual assessment use: guild-level analysis
- Cumulative/ecosystem level indicators
- R-based fitting tools/development

Technical Interactions Model

(Ono et al.)

- Single-species stock assessment models linked through interacting gears (no interspecies interactions).
- Model and predict fisheries given wide range of current constraints.
- "Human behavior realistic" cumulative catch and constraints.

$$1. \sum_{k=1}^{n_{metier}} d_{k,t} C_{j,k,t} \leq TAC_{j,t}$$

"Target species quota constraints"

2. $\sum_{k}^{n_{metier}} d_{k,t} C_{bycatch,k,t} \leq \text{Bycatch limit}$

"Bycatch limit = 4575 (halibut limit)"

3. $\sum_{k=1}^{n_{metter}} \sum_{j=1}^{n_{spectes}} d_{k,t} C_{j,k,t} \leq \text{Hard cap on yield}$

"The hard cap" = $1.7e^6$ t

 $4. \quad \lambda_1 d_{k,t=1} \le d_{k,t} \le \lambda_2 d_{k,t=1}$

"Métier concentration factor: contraction (λ_1) /expansion (λ_2) "

Gulf of Alaska Modeling

- GOA-IERP developed ROMS model, IBM models for recruitment.
- Freshwater input and other dynamics not strongly captured by current atmospheric forcing, still in "research" mode.
- GOA-IEA pre-modeling steps: Conceptual Model building (stakeholder/scientists)

TOR 6: Inclusion

- Annual indices part of ecosystem chapter
 - Guild biomass and exploitation, natural mortality estimates
- Inclusion of 9-month forecast indices based on predictive power in hindcasts
- 5-year strategic re-assessment of climate forecasts part of FEP Action Module
- ROMS/NPZ projections will form the basis of the Climate Vulnerability Assessment
- Climate Science Strategy will include outputs from ACLIM model suite

TOR 7: peer review

- ROMS physical results reviewed for indicator provision
- Starting 2016, CEATTLE to be reviewed as "alternate" model in EBS pollock stock assessment
- Ecopath models underwent CIE review for management purposes
- Evaluating robustness of ecosystem indicators under climate change (FATE project)
- Evaluation of thermal envelopes of commercial groundfish under climate change

TOR 8: communication

- MSEs conducted/in progress with stakeholder input
- Outputs (hindcast, long-term forecast) available on AOOS, other web portals
- ACLIM includes webinars and iterative discussion with councils

Strengths, Challenges, Solutions

S: History of frequent and consistent **communication** of a variety of products with the Council; Models and Ecosystem Consideration reports are **bridges** among programs.

C: Council needs consistently delivered products but also flexibility for evolution of content; Updates have been opportunistic and project based; Lack of a structured portfolio of AFSC, regional, and national ecosystem activities to enhance efficient, iterative, communication between AFSC, councils, and stakeholders

S: Develop ecosystem portfolio (e.g. including stakeholder-driven conceptual models), have AFSC and Council prioritize and define.

PORTFOLIO GAP EXAMPLE: There is no AFSC "Research Alliance" for adult fish on par with RPA for recruits - need to coordinate/prioritize field research on adult life-history, growth, feeding movement, local depletion, fisher & protected species interactions.

S: DATA IN: sharing culture, strong use of accessible, known databases, **RESULTS OUT:** Large variety of products (models, reports, eco-indicators) for 4 LMEs.

C: Internal databases lack universal access; models and indicators need regular updates; poor data awareness, many model output requests internally and externally.

S: Establish open access databases across divisions, improve both internal and external scripts library and web-tools for data access and exploration, make consistent data/indicator provision part of performance plans.

S: Cutting-edge **high-performance computing** work AFSC/PMEL/UW.

C: HPC & large data handling (transfer, storage) resources strained; DOC IT policies hinder collaboration.

S: Update infrastructure with expectation of "big computing"; explore NOAA HPC, universities, cloud.

S: Multimodel ensemble suite suitable for management stays up-to-date with unique data source (food habits).

C: For management needs, suite needs to be kept updated consistently but uses soft/unstable funding.

S: Increase **stable funding sources/FTEs** for both ecosystem modeling and food habits program(s) to establish operational status on par with stock assessments.